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Motivation

Detect stress induced by specific triggers in multimodal
data under missing modalities [1].

Figure: Recording physiological responses to stress-inducing stimuli

Dealing with missing modalies. Methods tackle miss-
ing modalities present limitations including (i) not being easily
generalizable to more than two modalities [2] (ii) requiring
all modalities during training.

Contributions
•Aligning all modalities in the space of the strongest

modality to learn a joint embedding space
•a Fusion strategy to handle missing modalities

during training and inference
•Set new SOTA on StressID [3] in various modality

settings

Our method

Anchoring

Unimodal representation. Each modality is encoded us-
ing a specific encoder and projected into a fixed size represen-
tation: f i

m ∈ Rd.
Anchoring the unimodal representations. Modality-
specific representations are aligned to the one of the video
using the infoNCE loss:
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Given M modalities, we define the anchoring loss:
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Masked Multimodal Transformer

Obtaining a global representation. The unimodal rep-
resentations are stacked and prepended a [CLS] token.
Masking missing modalities. The strategy to deal with
missing modalities is applied to the scaled dot-product [4]:
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Modality Dropout. Create two simultaneous views of a
batch and within one of the view, hide up to M − 1 modalities.

Lfusion = −
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∑B
k=1 exp(cos(CLSi, CLSk′)/τ )

Results

StressID [3] is designed for stress identification. It includes
sensors, audio and video recordings. It presents 711 recordings
and a missing modality ratio of η = 12.5%.
Comparison to SOTA.

ACC F1
Video 62(4)‡ 67(3)‡

Biomedical signals 58(4)‡ 66(5)‡

Audio 62(4)‡ 67(4)‡

Feature Fusion [3] 61(3)‡ 66(4)‡

Decision Fusion [3] 65(5)‡ 72(5)‡

Ours 69.5(3.7) 75.9(4.3)
Table: Comparison to SOTA

.Robustness to Missing Modalites.

Figure: Evaluation
on different modal-
ity ratios, η

ACC ∆ F1 ∆
69.5(2.9) 69.6(3.1)

no video 61.2(4.6) 8.3 63.0(4.2) 6.6
no audio 68.3(2.9) 1.2 68.4(3.0) 0.9

Table: Evaluation on two modality sce-
narios. For each scenario, we remove one modal-
ity from the test set.
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