

Motivation

Detect stress induced by specific triggers in multimodal data under **missing** modalities [1].

Figure: Recording physiological responses to stress-inducing stimuli

Dealing with missing modalies. Methods tackle missing modalities present limitations including (i) not being easily generalizable to more than two modalities [2] (ii) requiring all modalities during training.

Contributions

- Aligning all modalities in **the space of the strongest** modality to learn a joint embedding space
- a Fusion strategy to handle missing modalities during training and inference
- Set new SOTA on StressID [3] in various modality settings

Vínia Multimodal Learning for Detecting Stress under Missing Modalities

Julie Mordacq^{1,2} Leo Milecki^{1,3} Maria Vakalopoulou^{1,3} Steve Oudot^{1,2,*} Vicky Kalogeiton^{2,4,*} ¹Inria Saclay ²Ecole Polytechnique ³CentraleSupelec, Paris-Saclay ⁴LIX, CNRS, IP Paris ^{*}equal supervision

Our method

ing a specific encoder and projected into a fixed size represen- resentations are stacked and prepended a [CLS] token. tation: $f_m^i \in \mathbb{R}^d$.

Anchoring the unimodal representations. Modality- missing modalities is applied to the scaled dot-product [4]: specific representations are aligned to the one of the **video** using the infoNCE loss:

$$\mathcal{L}_{\mathcal{A},\mathcal{M}_m} = -\sum_{i=1}^B \log \frac{\exp(\cos(f_a^i, f_m^i)/\tau)}{\sum_{k=1}^B \exp(\cos(f_a^i, f_m^k)/\tau)}$$

Given M modalities, we define the **anchoring loss**:

$$\mathcal{L}_{\text{anchoring}} = \sum_{m=1,\mathcal{M}_m \neq \mathcal{A}}^{M} (\mathcal{L}_{\mathcal{A},\mathcal{M}_m} + \mathcal{L}_{\mathcal{M}_m,\mathcal{A}})$$

Masked Multimodal Transformer

Unimodal representation. Each modality is encoded us- **Obtaining a global representation.** The unimodal rep-

Masking missing modalities. The strategy to deal with

$$O_i = \sum_j z_{ij} \frac{\exp(Q_i^T K_j / \sqrt{d_k})}{\sum_{\{j', z_{ij'}=1\}} \exp(Q_i^T K_{j'} / \sqrt{d_k})} V_j$$

Modality Dropout. Create two simultaneous views of a batch and within one of the view, hide up to M-1 modalities.

$$\mathcal{L}_{\text{fusion}} = -\sum_{i=1}^{B} \log \frac{\exp(\cos(\text{CLS}^{i}, \text{CLS}^{i'})/\tau)}{\sum_{k=1}^{B} \exp(\cos(\text{CLS}^{i}, \text{CLS}^{k'})/\tau)}$$

Results

StressID [3] is designed for stress identification. It includes sensors, audio and video recordings. It presents 711 recordings and a missing modality ratio of $\eta = 12.5\%$.

Comparison to SO	TA.		
feature fusion [I]		ACC	$\mathbf{F1}$
(model) ↑ ↑ ↑	Video	$\frac{-2}{62(4)^{\ddagger}}$	$67(3)^{\ddagger}$
unimodal featurization	Biomedical signals	$58(4)^{\ddagger}$	$66(5)^{\ddagger}$
	Audio	$62(4)^{\ddagger}$	$67(4)^{\ddagger}$
decision fusion [1]	Feature Fusion [3]	$61(3)^{\ddagger}$	$66(4)^{\ddagger}$
(model) (model) (model)	Decision Fusion $[3]$	$65(5)^{\ddagger}$	$72(5)^{\ddagger}$
↑ ↑ ↑ unimodal featurization	Ours	69.5(3.7)	75.9(4.3)
	Table: Comparison to SOTA		

Robustness to Missing Modalites.

	ACC Δ	$\mathbf{F1}$ Δ
	69.5(2.9)	69.6(3.1)
no video	61.2(4.6) 8.3	63.0(4.2) 6.6
no audio	68.3(2.9) 1.2	68.4(3.0) 0.9

Table: Evaluation on two modality sce-**Evaluation** narios. For each scenario, we remove one modal-Figure: on different modal-ity from the test set. ity ratios, η

References

- [1] J. Mordacq, L. Milecki, et al. ADAPT: Multimodal learning for detecting physiological changes under missing modalities. In MIDL, 2024.
- [2] M. Ma, J. Ren, et al. Smil: Multimodal learning with severely missing modality. In AAAI, 2021.
- [3] H. Chaptoukaev, V. Strizhkova, et al. Stressid: a multimodal dataset for stress identification. NeurIPS, 2023.
- [4] Leo Milecki, Vicky Kalogeiton, et al. Contrastive masked transformers for forecasting renal transplant function. In MICCAI, 2022.