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Motivation

Detect stress induced by specific triggers in multimodal
data under missing modalities |1].
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Figure: Recording physiological responses to stress-inducing stimuli

Dealing with missing modalies. Methods tackle miss-
ing modalities present limitations including (i) not being easily
generalizable to more than two modalities 2| (ii) requiring
all modalities during training.

Contributions

e Aligning all modalities in the space of the strongest
modality to learn a joint embedding space

¢ o Fusion strategy to handle missing modalities
during training and inference

o Set new SOTA on StressID |3 in various modality
settings

Our method
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Masked Multimodal Transformer

Unimodal representation. FEach modality is encoded us-
ing a specific encoder and projected into a fixed size represen-

tation: f! € RY.

Anchoring the unimodal representations. Modality-
specific representations are aligned to the one of the video
using the infoNCE loss:

exp(cos( fa, f1)/7)
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Given M modalities, we define the anchoring loss:
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Obtaining a global representation. The unimodal rep-
resentations are stacked and prepended a [CLS] token.

Masking missing modalities. The strategy to deal with
missing modalities is applied to the scaled dot-product [4]:
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Modality Dropout. Create two simultaneous views of a
batch and within one of the view, hide up to M — 1 modalities.
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Results

StressID |3| is designed for stress identification. It includes
sensors, audio and video recordings. It presents 711 recordings
and a missing modality ratio of n = 12.5%.

Comparison to SOTA.

feature fusion [1] ACC 1
¢ model ) . : -
) 1 Video 62(4)*  67(3)
unTlmodaIfTeaturlzaTtlon Biomedical signals 58( ):: <5>:
Audio 62(4)*  67(4)*
decision fusion ['|] Feature Fusion [3] 61(3) (4)
(model)(model)(model)  Decision Fusion [3|  65(5)*  72(5)*
unTimodaI fgaturizaiion Ours 69.5(3.7) 75.9(4.3)
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Table: Comparison to SOTA

Robustness to Missing Modalites.

ACC A F1 A

69.5(2.9)  69.6(3.1)
l no video 61.2(4.6) 8.3 63.0(4.2) 6.6

B mm Acc = FI
30 no audio 68.3(2.9) 1.2 68.4(3.0) 0.9
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Table: Evaluation on two modality sce-

Fioure: Evaluation : -
5 narios. For each scenario, we remove one modal-

?n dlff.erent modal- ity from the test set.
1ty ratios, n
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